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Abstract
Successful locomotion is essential for the survival
of most animals and crucial for arboreal species.
In this paper, we analyze the locomotor behaviour
of a species of lizard, Anolis carolinensis, from
the perspective of transfer learning. By analyz-
ing the limb movements of 4 individuals on 6
different surfaces (3 inclinations × 2 perch diam-
eters), we show that the strategies employed to
improve stability during locomotion on narrow
perches can be transferred across environments
with different inclines. This transfer of behaviour
is analogous to phenotypic plasticity, which likely
plays a key role in the rapid adaptive evolution
characteristic of Anolis lizards. This novel result
emphasizes the valuable contribution that mod-
ern machine learning perspectives can give to the
study of comparative biomechanics.

1. Introduction
Anolis lizards are a model system for a number of facets of
biology and are especially important for evolutionary stud-
ies (Poe et al., 2017; 2018; Román-Palacios et al., 2018).
In particular, Anolis lizards are noted for the rapid and re-
peated evolution of ecomorphs, species whose morphology,
behaviour, and ecology have evolved concordantly to en-
able them to specialize for particular arboreal microhabitats
(Losos, 1990a;b; 2009). This adaptation occurs in response
to exposure to new niches, (e.g. occurring because of disper-
sal to new islands) and in response to competitive displace-
ment (Losos et al., 1997). For example, it has been shown
that Anolis carolinensis quickly adapted its locomotor be-
haviour and morphology to new environments in response
to the introduction of an invasive species of anole, A. sagrei
(Stuart et al., 2014). A. carolinensis was relegated to higher
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perches and, in response, evolved to accommodate the new
habitat after only 20 generations (Stuart et al., 2014).

Possibly due to the importance of the genus for evolutionary
biology, A. carolinensis was chosen as one of the first reptil-
ian species for genome sequencing (Modi & Crews, 2005;
Rovastos et al., 2015; Alfoldi et al., 2011). A. carolinensis
is a small lizard common to the the South-East of the United
States. As an arboreal generalist, A. carolinensis is found
on a variety of substrates ranging from the top-most, narrow
branches of trees, to broad vertical tree trunks, to the ground
(Mattingly & Jayne, 2004; Irschick et al., 2005a;b). Because
of this generalist behaviour, A. carolinensis encounters sur-
faces that vary dramatically in incline, perch diameter and
complexity, which not only impose functional challenges for
the animal, but raises interest questions about the morpho-
logical, biomechanical, and physiological strategies needed
for survival in such a heterogeneous environment.

Due to the complexity of the phenomenon under study,
which is at the interaction of biology and physics, and the
lack of satisfactory mathematical modeling of the full body
dynamics of lizards, most studies in biomechanics and of
A. carolinensis in particular, are partial and confined to
traditional statistical methods, in order to at least satisfy
biological interpretability requirements (Foster & Higham,
2012; 2014; Mattingly & Jayne, 2004). While physiological
branches of biology, like biomechanics, seem to be stuck
in the past, with the ubiquitous and almost exclusive use of
classical univariate statistics, advancements in computing
power have facilitated the development and application of
sophisticated methods to biological fields such as genomics,
ecology, and evolution.

In this work, we study the locomotor behaviour of A. caroli-
nensis, using the modern machine learning perspective of
generalization, but restricting our analysis to interpretable
algorithms, and show how this point of view can provide
a deeper insight to fundamental questions in biology, such
as the fast adaptability of certain reptiles to new environ-
ments. We focus on understanding the locomotor behaviour
of A. carolinensis, and showing how biologically meaning-
ful features of the dynamics of this species on heterogeneous
habitats transfer across environments (3 inclinations - 0, 45,
90 - deg × 2 perch diameters - broad, narrow - ). Previous
studies have taken a descriptive approach and found that
limb movements and function of the forelimbs and hind
limbs shift on different arboreal substrates to increase sta-
bility, particularly on narrow substrates (Foster & Higham,
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2012; 2014). Our analysis builds on these results by using
Transfer Learning (TL) related ideas and Linear Discrimi-
nant Analysis (LDA) to understand how common locomotor
strategies can facilitate movement on different substrates.
We will not leverage our analysis to the most advanced non-
linear algorithms, since the negligible and not biologically
significant improvement in accuracy will come with loss of
interpretability of the results. Interestingly, we show that
the features that transfer across heterogeneous environments
are the ones relevant to stability and enable the accurate
prediction of perch diameter on any of the inclines tested.
This result gives a new perspective to the understanding of
the adaptability of A. carolinensis’s functional morphology
across environments, and gives a biologically meaningful
explanation of which factors contribute to this adaptability.

The remaining part of the paper is organized as follows. In
Section 2, we describe the experiments and the datasets; In
Section 3 we describe the algorithms used; In Section 4, we
present and discuss our results; In Section 5, we summarize
our results and give our conclusions.

2. Experiments and Datasets
The data for this study were obtained from (Foster &
Higham, 2012). As the experimental methods are described
in detail there, we will only outline the setup as it relates
to the structure of our dataset. Briefly, four adult A. caroli-
nensis (Fig. 1) were filmed at 500 frames/sec with two high
speed video cameras while running on 1m long broad (9
cm wide) or narrow (1.3 cm diameter) perches inclined at
0 deg, 45 deg, and 90 deg. For each condition, 2-5 strides
were selected for analysis if both limbs were visible and the
lizard ran steadily on the top of the perch through the entire
field of view.

Figure 1. Photo of Anolis carolinensis. Photo credit: KLF.

For all videos selected for analysis, 13 landmarks on the
lizards bodies were digitized and used to calculate the vari-
ables to capture position and movement of the body (body
speed, and pectoral/pelvic girdle rotation and height above

the perch surface) and limbs (duty factor, stride frequency,
and 3D joint angles and angular velocities). See (Foster &
Higham, 2012) for further details. To incorporate how each
of these variables changed during the course of the stride,
values xt that corresponded to biologically meaningful time
points (e.g. beginning or end of the period of foot-surface
interaction - stance phase -) were extracted from the time
series yt of each landmark. The final dataset consists of
38 variables for each limb for a total of 74 variables, af-
ter 2 duplicate variables (body speed and stride frequency)
were removed. A total of 76 strides were analyzed for the
forelimb and 89 strides for the hind limb.

For the analysis, the full dataset was divided in 9 different
subsets. First in 3 groups by limb (forelimb only, hind
limb only, and both limbs combined), and then each of
them was further divided in 3 by variable type (angular
variables, angular velocity variables, and angular+angular
velocity variables combined; see Table 1). This subdivision
was made to test environment-knowledge transfer across
habitats in as many cases as our data allowed.

3. Methods
This section briefly explains TL and LDA.

Transfer Learning
TL is at the core of machine intelligence and concerns how
algorithms trained to perform a task can perform well on a
different task (Pratt, 1993; Goodfellow et al., 2017). In its
essence, TL is motivated by the question of understanding
how animals transfer and acquire knowledge much quicker
than machines.

Suppose each of the landmark observations for the locomo-
tion of lizards on a specific environment E live in a space
X and are distributed with pdf fX(x). Suppose that an
algorithm is trained to learn E from X , using a sample
{xi, ei}ni=1 ∈ X × E . This procedure outputs a prediction
rule f : X → E . TL aims at transferring the biological fea-
tures learned in this task to a new environment, and thus to a
new feature space X ′, novel labels E ′, and possibly a differ-
ent learning rule f ′, derived from a new set of observations
{x′i, e′i}n

′

i=1 ∈ X ′ × E ′. In our case, we will concentrate
on what is called zero-shot learning or zero-data learning
(Larochelle et al., 2008; Palatucci et al., 2009; Socher et al.,
2013), namely the case in which no information about the
classes in the test phase is provided during training.

Linear Discriminant Analysis
LDA is a classification algorithm, which relies on the appli-
cation of the Bayes rule to assign a label to a specific set of
variates (James et al., 2013).

Suppose we want to classify a multivariate time series of
landmarks representing the locomotion of one specimen
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into one of K classes. The prior probability of belonging
to one of the classes is independent of the class. Define
fk(yt) = P (Y = yt|C = k) = P (X = xt|C = k) the
probability distribution of a time series yt from class k. In
our analysis we use a single specific calculated measurement
xt from the time series yt (e.g. beginning or end of the
period of foot-surface interaction - stance phase -). Using
Bayes theorem and imposing equally probable classes, we
have:

P (C = k|Y = yt) =
fk(yt)∑K
k=1 fk(yt)

.

Moreover, suppose that fk(yt) ∼ MVN(µk,Σ), then the
Bayes classifiers assigns the time-series to the class c such
that

c = arg max
k=1,...,K

Bk(yt),

with
Bk(yt) = 2x′tΣ̂

−1µ̂k − µ̂′kΣ̂−1µ̂k,

and where µ̂k and Σ̂ are the class sample mean and the
sample variance-covariance matrix of the xt’s, respectively,
and can depend on which biologically meaningful xt is
extracted from the time series. This method is called LDA,
since the discrimination rule is a linear function of xt.

Training and Testing
The training and testing folds used in our analysis do not
contain common class environments. For example, we train
a model to distinguish between perch diameters using only
time series coming from the dynamics on a single incli-
nation, and then we test its classification performance on
the remaining two inclinations. This case is in fact more
complicated than training instead on two inclinations and
testing on one, or providing all class environments both in
the training and testing phase. We refer to Table 1 for the
full set of models analyzed.

4. Results and Discussion
This section is dedicated to the results of our analysis and
their importance for the biomechanics of lizards.

Successful TL is substrate and limb/input specific
Successful TL (prediction accuracy> 0.80) was achieved in
LDA models trained to distinguish between perch diameters
given a single incline, and tested on the remaining two incli-
nations (Fig. 2). LDA fails to distinguish between inclines
when tested on unseen perch diameters. The inclines which
better transfer information to the others depend on which
features (forelimb, hind limb, or both; angles, angular veloc-
ities, or both) are provided as input to the algorithm. Given
forelimb angular data, only training with the 90 deg incline
enabled the model to successfully predict perch diameter
in the remaining two inclines (0.91 accuracy; Table 1). In
contrast, no model could successfully generalize when us-
ing forelimb angular velocity data, whereas when using the

Table 1. In this table we report the results of our experiments
on the different prediction tasks we analyzed. We used the fol-
lowing abbreviations: FL=forelimb, HL=hind limb, BL=both
limbs; ang.=angular variables, vel.=angular velocity variables,
all=angular+angular velocity variables, 0=level, 45=45 degree
incline, 90=90 degree incline, diam.=diameter, incl.=incline.

VARIABLES TRAIN TEST TASK ACCURACY

FL - ANG. 0 45,90 DIAM. 0.38
FL - ANG. 45 0,90 DIAM. 0.65
FL - ANG. 90 0,45 DIAM. 0.91
FL - ANG. BROAD NARROW INCL. 0.44
FL - ANG. NARROW BROAD INCL. 0.52
FL - VEL. 0 45,90 DIAM. 0.60
FL - VEL. 45 0,90 DIAM. 0.60
FL - VEL. 90 0,45 DIAM. 0.57
FL - VEL. BROAD NARROW INCL. 0.51
FL - VEL. NARROW BROAD INCL. 0.73
FL - ALL 0 45,90 DIAM. 0.81
FL - ALL 45 0,90 DIAM. 0.81
FL - ALL 90 0,45 DIAM. 0.70
FL - ALL BROAD NARROW INCL. 0.47
FL - ALL NARROW BROAD INCL. 0.45
HL - ANG. 0 45,90 DIAM. 0.91
HL - ANG. 45 0,90 DIAM. 0.85
HL - ANG. 90 0,45 DIAM. 0.89
HL - ANG. BROAD NARROW INCL. 0.29
HL - ANG. NARROW BROAD INCL. 0.45
HL - VEL. 0 45,90 DIAM. 0.89
HL - VEL. 45 0,90 DIAM. 0.85
HL - VEL. 90 0,45 DIAM. 0.69
HL - VEL. BROAD NARROW INCL. 0.69
HL - VEL. NARROW BROAD INCL. 0.40
HL - ALL 0 45,90 DIAM. 0.89
HL - ALL 45 0,90 DIAM. 0.85
HL - ALL 90 0,45 DIAM. 0.82
HL - ALL BROAD NARROW INCL. 0.31
HL - ALL NARROW BROAD INCL. 0.30
BL - ANG. 0 45,90 DIAM. 0.81
BL - ANG. 45 0,90 DIAM. 0.79
BL - ANG. 90 0,45 DIAM. 0.87
BL - ANG. BROAD NARROW INCL. 0.44
BL - ANG. NARROW BROAD INCL. 0.61
BL - VEL. 0 45,90 DIAM. 0.43
BL - VEL. 45 0,90 DIAM. 0.56
BL - VEL. 90 0,45 DIAM. 0.66
BL - VEL. BROAD NARROW INCL. 0.70
BL - VEL. NARROW BROAD INCL. 0.67
BL - ALL 0 45,90 DIAM. 0.94
BL - ALL 45 0,90 DIAM. 0.75
BL - ALL 90 0,45 DIAM. 0.89
BL - ALL BROAD NARROW INCL. 0.35
BL - ALL NARROW BROAD INCL. 0.45
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entire forelimb dataset, models trained on 0 deg and 45 deg
inclines both were successful at generalizing to perch diam-
eters in the remaining two inclines (0.81 accuracy; Table 1).
In the hind limb, when given both angular variables alone
and the entire hind limb dataset, any inclination could be
used to successfully predict perch diameter in the remaining
two inclinations (0.82-0.91 accuracy; Table 1) whereas only
the 0 deg and 45 deg inclines could be used to train suc-
cessful models when given only hind limb angular velocity
data. Finally, when data from both limbs were combined,
models trained on 0 deg and 90 deg, but not 45 deg, were
able to generalize well to the remaining inclines, but only
when using angular data only or a combination of angular
and angular velocity data (0.81-0.94 accuracy; Table 1).
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Figure 2. Plots of LDA scores for training (black) and test (red)
sets, separated by perch diameter (squares=broad, circles=narrow).
Plots shown are for the best models: A) trained on 90 deg with
the forelimb angular variables (prediction accuracy= 0.91), B)
trained on 0 deg with the hind limb angular variables (prediction
accuracy=0.91, C) trained on 0 deg with the complete dataset
(prediction accuracy=0.94).

Features transferring across environments
In order to understand which biologically meaningful vari-
ables contributed most strongly to the models that are suc-
cessfully able to transfer the learning of perch diameter to
different inclines, we correlated our input variables against
the corresponding LDA classification hyperplanes. The
forelimb variables used to create models with the highest
accuracy of TL were shoulder height (lower on narrow vs
broad perch), humerus depression, rotation, and retraction
(greater on narrow vs broad perch), elbow flexion (greater
on narrow vs broad perch), duty factor (higher on narrow vs
broad perch), and humerus depression, rotation, and retrac-
tion velocity during swing phase (faster on narrow vs broad
perch). Similarly, the hind limb variables used to create the
best TL models were hip height (lower and more stable on
narrow vs broad perch), femur depression and retraction,
and knee and ankle flexion (greater, and moved over greater
range of angles on narrow vs broad perch), femur rotation
(less, and moved over smaller range of angles on narrow

vs broad perch), pelvic girdle rotation (less on narrow vs
broad perch), body speed (slower on narrow vs broad perch),
and swing and stance phase velocities of femur retraction,
rotation, knee, and ankle angles (faster on narrow vs broad
perch). In models that included both forelimb and hind
limb data, the majority (> 75%) of variables that correlated
strongly (> 0.7) belonged to the hind limb. Even among
variables that correlated > 0.5, > 62% belonged to the hind
limb.

Evolutionary implications of TL in Anolis lizards
As explained above, the variables that transfer across en-
vironments (inclinations) are the ones that are integral to
lowering the center of mass, flexing the limbs, and wrapping
limbs around on the sides of narrow perches. These traits
are all consistent with known strategies for improving sta-
bility on narrow substrates (Foster & Higham, 2012). This
is further supported by the fact that the variables that appear
to transfer across environments in the majority of our best
models relate to the hind limb, which has been suggested to
take on a more stabilizing role on narrow surfaces (Foster
& Higham, 2012). The principles underlying TL and the
results of our analysis connect to the rapid adaptive radia-
tion, likely facilitated by plasticity (West-Eberhard, 1989;
Losos et al., 2000; Kolbe & Losos, 2005), that has made
Anolis lizards a model system in biology. If pre-existing
behaviours that facilitate locomotion on narrow surfaces
are useful on multiple types of inclines, then the locomotor
plasticity manifested through the transfer of the traits that
facilitate locomotion on those surfaces should give an adap-
tive advantage by improving stability of motion and indeed,
survival in those new complex environments.

5. Conclusions
In this work, we have leveraged machine learning methods,
specifically TL, to gain insights into the functional demands
on locomotion imposed by the arboreal environment. Our
results demonstrate that it is possible to learn to identify
the diameter of the surface that our anoles are running on,
regardless of the inclination of the surface and that this
TL capability is limb-specific. Further, we show that the
variables integral to this TL process are the ones that relate to
locomotor stability. Locomotor stability is a crucial factor
for the survival of arboreal species, and the ability of A.
carolinensis to adapt locomotor behaviour might reflect
the evolutionary advantage of having limbs functioning in
complex habitats and being able to transfer skills across
heterogeneous environments for the sake of survival. Of
fundamental importance is to test how our models generalize
to different species of lizards as this could provide insights
into the plasticity and adaptability of reptiles.
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